

Comparison of HIV-1 drug resistance profiles generated from novel software applications for routine patient care

Dimitri Gonzalez¹, Benjamin Digmann², Matthieu Barralon³, Ronan Boulme³, Chalom Sayada³, Joseph Yao²

¹ ABL TherapyEdge Spain SL, Barcelona, Spain.
² Mayo Clinic, Rochester, MN, U.S.A.
³ ABL SA, Luxembourg.

Background

November 2-6, 2014

• Clinical laboratories performing routine HIV-1 genotyping antiviral drug resistance (DR) testing need reliable and up-to-date information systems to provide accurate and timely test results to optimize antiretroviral treatment in HIV-1-infected patients.

Materials and Methods

- Three software applications were used to compare DR profiles generated from the analysis of HIV-1 protease (PR) and reverse transcriptase (RT) gene sequences obtained by Sanger sequencing assay in 100 selected
- Interpretative results obtained from the Trugene HIV-1 Genotyping assay (TG; Guidelines v17.0) were compared with a newly FDA-registered data processing module (DPM v1.0, *Fig. 1*) and the research-use-only ViroScore-HIV (VS) software, both of which use the latest versions of Stanford HIVdb (SD v7.0) and geno2pheno (G2P v3.3) interpretive algorithms (IA, *Fig.2*).

clinical plasma samples from March 2013 through May 2014.

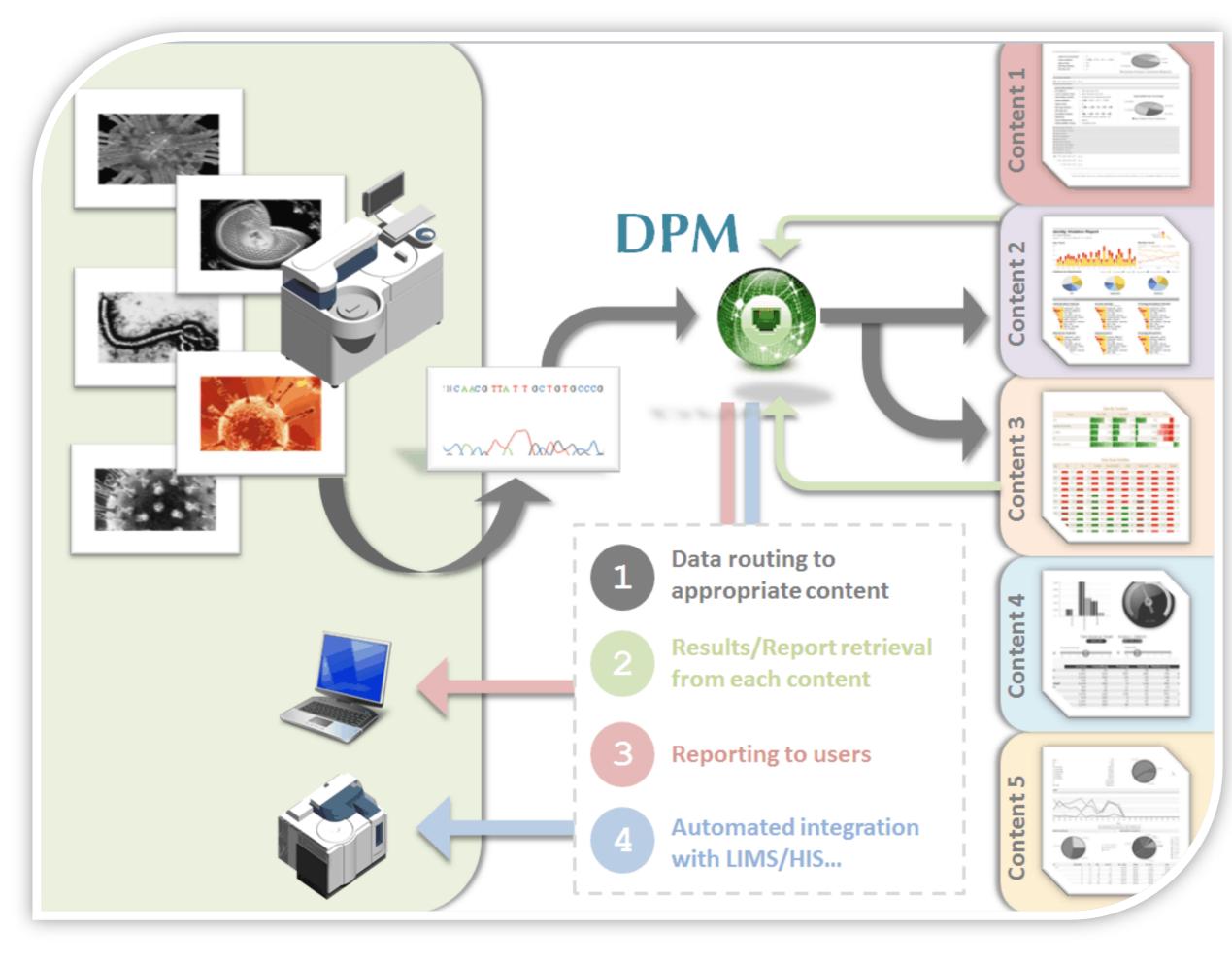


Fig. 1: Overview of the DPM FDA-registered system.

- Differences among the DR interpretive algorithms were compared according to drug class (NRTI, NNRTI, PI) and each drug.
- HIV-1 tropism and integrase inhibitor resistance were not evaluated (not available in TG).

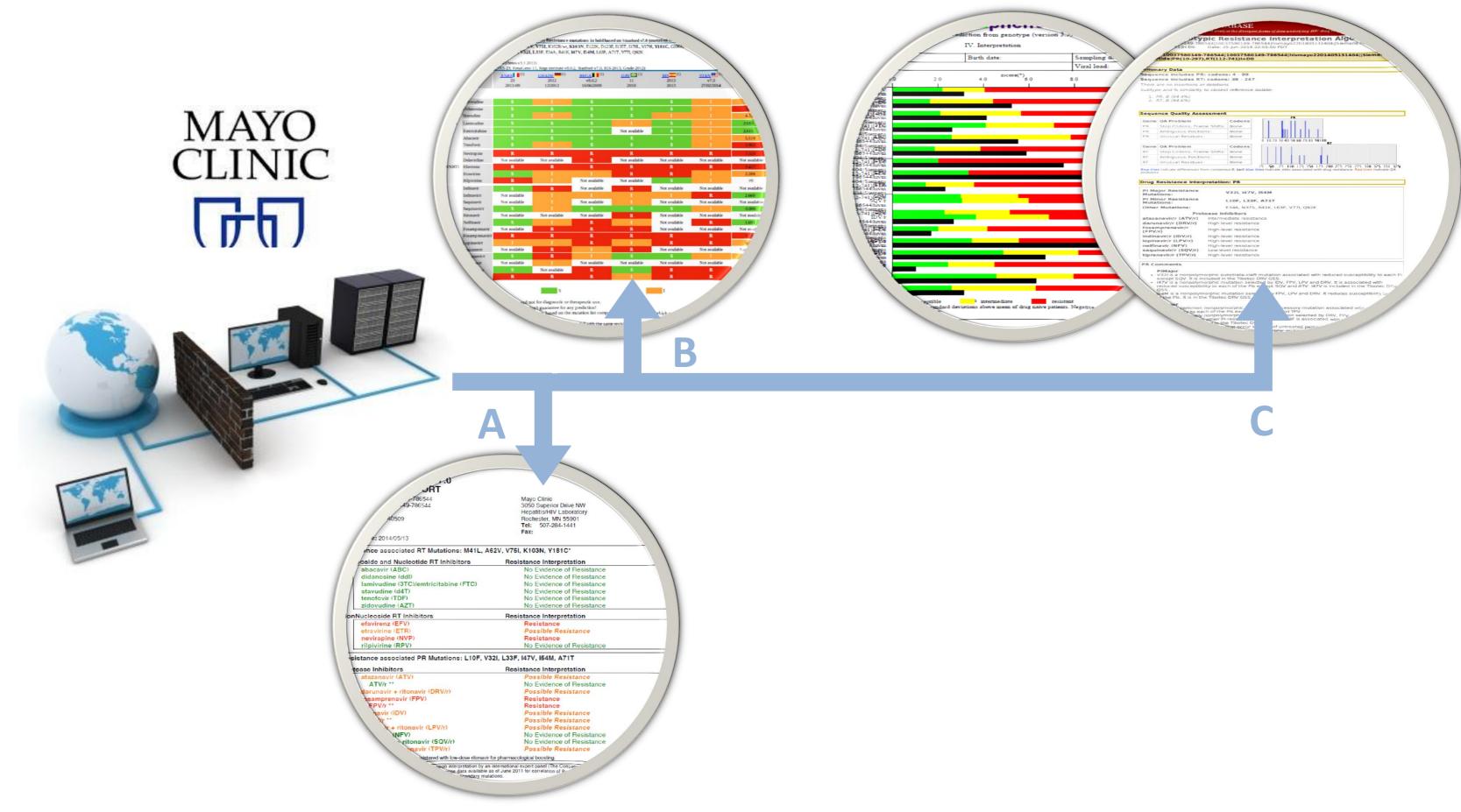


Fig. 2: Overview of the workflow of analyses for Trugene HIV-1 (A), ViroScore® (B), and DPM (C).

Results

- Among 100 selected TG sequences generated at the Mayo Clinic laboratory from March 2013 through May 2014, agreement of DR interpretative results between DPM v1.0 and VS was >99.9%.
- Agreement between TG and SD and between TG and G2P were both only 17%.
- Median % agreement in DR interpretation between TG and SD, TG and G2P, SD and G2P are showed in Table 1.
- Detailed % agreement for each drug or drug combination are shown in Table 2.
- Table 1: Overall agreements of drug resistance interpretations between Trugene, ViroScore
SD HIVdb and ViroScore Geno2Pheno.

	TOTAL**	PI	NRTI**	NNRTI**
Median Correlation ratio TruGene / VS-HIVDB	0,89	0,86	0,95	0,95
Median Correlation ratio TruGene / VS-G2P	0,83	0,84	0,81	0,82
Median Correlation ratio VS-HIVDB / VS-G2P	0,83	0,82	0,92	0,81
	** RPV, D4T, AZ			

- With TG as the reference result, SD and G2P generated:
 - Positive" minor discordance, defined as susceptible S vs. intermediate I, or I vs. resistant R to ≥1 drug, in 66% and 56% of results, respectively;
 - "Negative" minor discordance (I vs. S, or R vs. I) in 32% and 54%
 - major discordance (S vs. R) in 6% and 15%
 - o and major discordance (R vs. S) in 1% and 19% of subjects, respectively.

Table 3: Types of discordances observed in drug resistance interpretations between Trugeneand results obtained via DPM from SD HIVdb and Geno2Pheno.

Number of samples with at least X moderate positive switch for DPM-HIVdb compared to TruGene	66
Number of samples with at least X moderate positive switch for DPM-G2P compared to TruGene	56
Number of samples with at least X high positive switch for DPM-HIVdb compared to TruGene	6
Number of samples with at least X high positive switch for DPM-G2P compared to TruGene	15
Number of samples with at least X moderate negative switch for DPM-HIVdb compared to TruGene	32
Number of samples with at least X moderate negative switch for DPM-G2P compared to TruGene	54
Number of samples with at least X high negative switch for DPM-HIVdb compared to TruGene	1
Number of samples with at least X high negative switch for DPM-G2P compared to TruGene	19

Table 2: Agreements of drug resistance interpretations between Trugene, ViroScore SD HIVdb and ViroScore Geno2Pheno for each drug or drug combination.

	ATV/r	DRV/r	FPV/r	IDV/r	LPV/r	NFV	SQV/r	TPV/r	3TC	ABC	AZT	D4T	DDI	FTC	TDF	EFV	ETR	NVP
Correlation ratio TruGene / DPM-HIVDB	0,89	0,87	0,82	0,90	0,78	<mark>0,96</mark>	0,86	0,81	0,99	0,79	0,83	0,76	0,80	0,98	0,91	0,95	0,64	0,96
Correlation ratio TruGene / DPM-G2P	0,80	0,94	0,84	0,90	0,94	0,83	0,82	0,47	0,99	0,63	0,84	0,52	0,60	0,98	0,62	0,87	0,58	0,82
Correlation ratio DPM-HIVDB / DPM-G2P	0,83	0,86	0,81	0,81	0,81	0,83	0,87	0,41	0,99	0,84	0,88	0,65	0,71	0,99	0,61	0,89	0,58	0,81

Conclusions

- Substantial discrepancies (<75% agreement) exist among the 3 interpretive algorithms for ETR, while G2P differed from TG and SD for resistance to TDF and TPV/r.
- Use of more than one DR interpretive algorithm using well-validated software applications, such as DPM v1.0 and VS, would enable clinical laboratories to provide clinically useful and accurate DR results for patient care needs.

http://www.ablsa.com contact@ablsa.com

