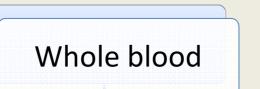


Next-Generation Sequencing Technology in the Clinical HIV Laboratory: A More Sensitive Alternative to Sanger Sequencing

Daniela Ram¹, Dena Leshkowitz², Dimitri Gonzalez³, Relly Forer⁴, Varda Oron-Karni⁵, Itzchak Levy⁶, Michal Chowers⁷, Margalit Lorber⁸, Ella Mendelson^{1,9} & Orna Mor¹

¹National HIV Reference Laboratory, Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel; ²Bioinformatics Unit, Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; ³ABL TherapyEdge Spain SL, Barcelona, Spain, ⁴Dyn Diagnostics, Caesarea, Israel; ⁵Rhenium, Modiin, Israel; ⁶Infecious Disease Unit, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; ⁷Infecious Disease Unit, Meir Medical Center, Kfar Saba, Israel; ⁸Autoimmune Disease Unit, Rambam Medical Center, Haifa, Israel; ⁹Tel-Aviv University, Tel-Aviv, Israel

BACKGROUND


Sanger based HIV sequencing is currently the method of choice for the identification and follow-up of HIV drug resistance. To assess the utility of bench-top next generation sequencing (NGS) platforms for the clinical HIV diagnostic laboratory, we have analyzed results obtained by Roche GS Junior (GSJ), Illumina MiSeq and ABI's IonTorrent (ION), and compared the mutations load and the prediction of HIV resistance derived from GS Junior and Trugene (TG) in all samples and between the four platforms in representative samples.

MATERIALS & METHODS

A1. Patients' Characteristics

Patient	TG	NGS	Sub-	Risk	VL (cop./ml)	CD4	T/N	ADT	
Number	Sample	Sample	type	Group	(cop./ml)	(counts)	I/N	ANI	

A2. Experimental Design

A3. Library Preparation, Sequencing & Analysis

	GSJ	MiSeq	Ion Torrent	Trugene	
Target amplification	Roche Kit for	Home ma	Trugene HIV kit for RT_PR		
Library preparation	RT_PR	Nextera	Ion Xpress Plus Fragment Library Kit	NONE	
Sequencing	Reads/sample: ~10,000 Tot # samples:10	Reads/sample: 500,000-million Tot # samples:10	Reads/sample: ~150,000. Tot # samples: 4	Open Gene system for each sample	
Output	Reads alignments (FASTA, AVA); mutation scores (>0%) & resistance	Reads alignments (BAM)	Reads alignments (BAM); mutation scores (>%5)	Open Gene Software,17.01 guidelines	
Post NGS analysis	DeepChek [®] -HIV on original AVA files	Realignment GATK, Trimming, mapping BWA	None	Stanford HIV resistance DB	

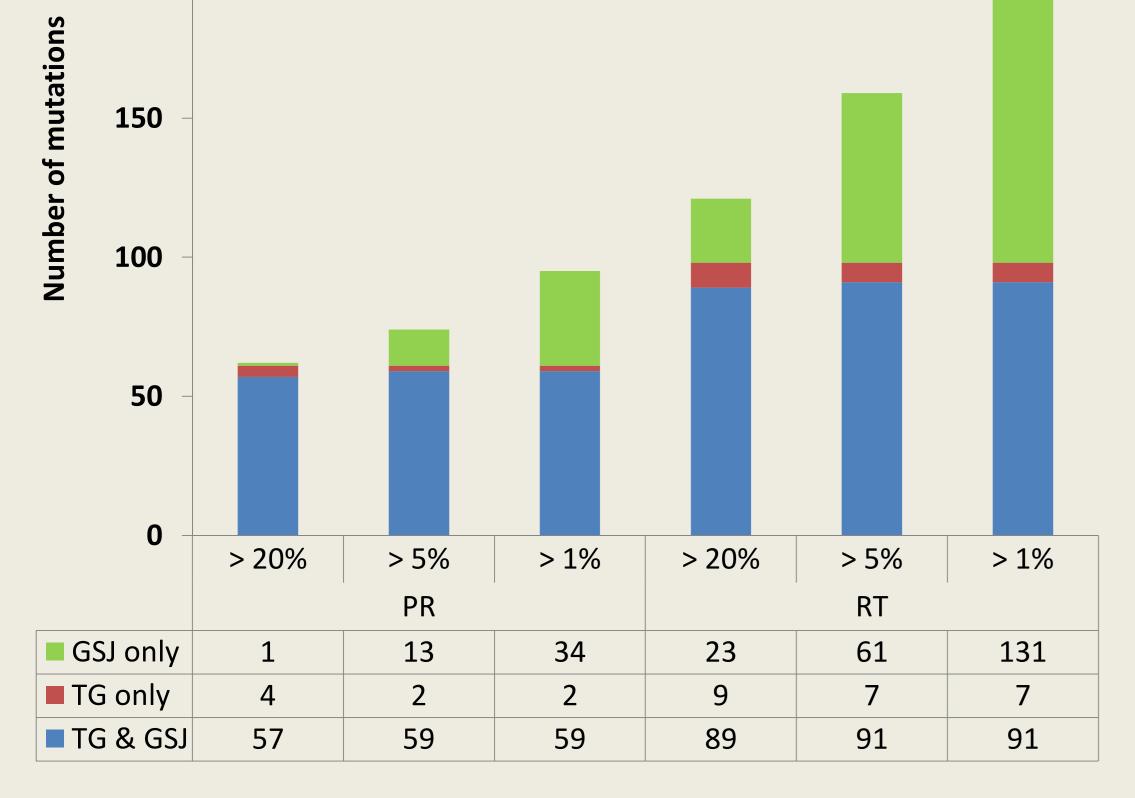
								1
2333	64061 (DNA & RNA)		В	MSM	120,000	483	Ν	-
2334	64064 (DNA & RNA)		С	OGE-F	8,300,000	NA	Ν	-
2352	64006	64301	FB	MSM	500,000	429	Ν	-
2261	63308	64340	В	MSM	620	596	Ν	-
2275	63716		A	UK	980	NA	Т	FTC,TDF, RTV,ATZ
2355	64288		AE	MSM	4,800,000	NA	Ν	-
1101	62026		С	OGE-IL	74,700	NA	Т	FTC,TDF RTV,DRV
187	61486		С	OGE-IL	47,900	170	Т	FTC,TDF, RTV,RAL

	amplificatio					
Low viral load- PBMC Plasma	Library preparatio					
Magna Pure Compact DNA extraction Nuclisens RNA extraction	Sequencin					
Target Amplification and Preparations for Sequencing						
	Output					
GS Junior MiSeg IonTorrent TruGene	Post NGS analysis					

RESULTS

A. COMPARISON BETWEEN GSJ & TRUGENE

A 1. Total number and percentage of amino acid mutations identified in 6 samples assessed by GSJ & TG

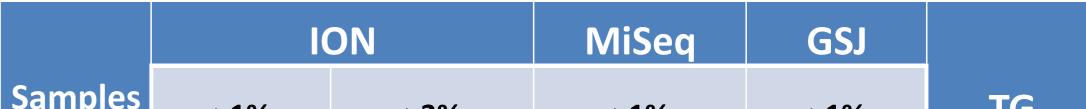

Mutations (>1% in GSJ)	RT	PR						
% TG only	7.1%	3.3%						
% GSJ only	57.2%	35.8%						
✓ 94% of all substitutions detected by TG were also detected by GSJ								
 Only 48% of the amino acids substitutions detected by GSJ were also found by TG 								

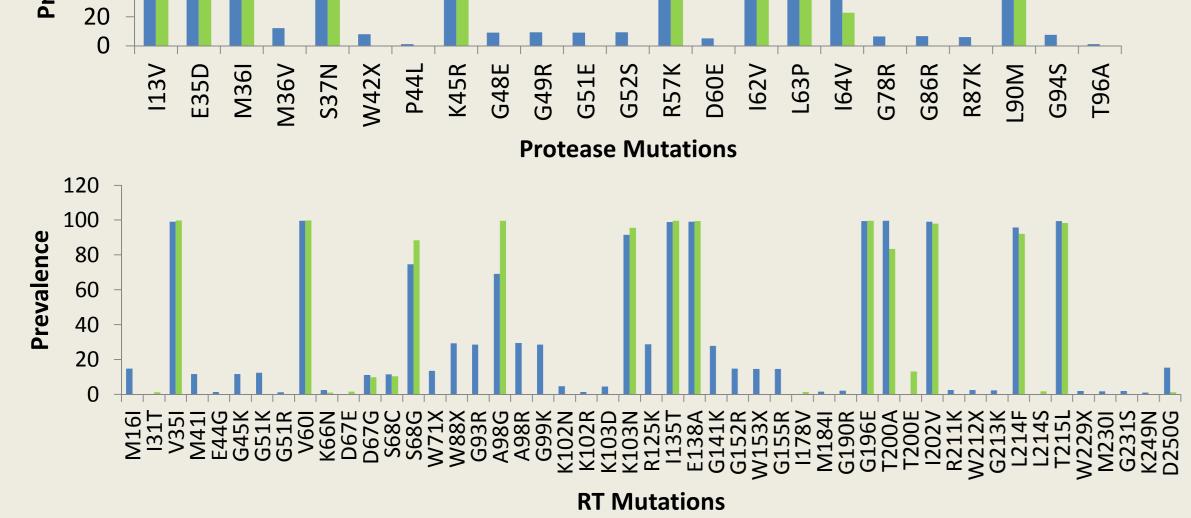
A2. Resistance Mutations identified by GSJ & TG (results of 8 samples)

		RT DRMs		PR DRMs				
Sample	Common	TG Only	GSJ only	Common	TG Only	GSJ only		
64061	T215L(98%), A98G(99%), K103N(95%), E138A(99%)	T215F(0.05%)	D67E(1.98%), D67G(9.75%)	L90M(99%)	None	None		
64064	54 None None		T69N(5%), K65N(6.6%), Y181C(7.5%)	None	None	None		
64301	None	None	None	None	None	None		
64340	None	None	None	A71T(99%)	None	None		
63716	.6 None None		None	None	None	None		
64288	288 None None		L100F(35%), K103E(3%)	None	None	None		
62026	None	None	K65N(1.03%)	None	None	L10MI(3.2%,11%)		
61486	None	None	K65N(9.7%), D67N(3%), K101R(15%), V118I(20%), M184V(9%)	None	None	None		

200

250

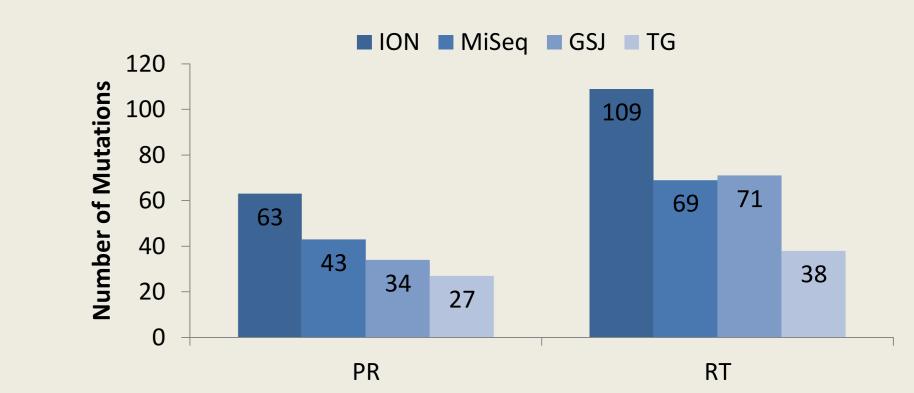



B . Mutations identified at >1% frequency in plasma viral RNA versus PBMCs proviral DNA ¹²⁰ ¹⁰⁰ ⁸⁰ ⁶⁰ ⁴⁰

C. Spearman correlation between frequency of 688 sequence variants identified in MiSeq and/or GSJ

Illumina_IonTorre Illumina_Illumina_Illumina_Illumina_Illumina_Illumina_Illumina_ nt N701 N702 N703 454 1% if both strands >0 0.62 0.21 0.15 0.53 0.11 0.18 0.14 0.20 0.04 454 2 % if both strands >0 0.12 0.11 0.16 0.34 0.07 0.11 0.25 454_3% if both strands >0 0.18 0.16 0.18 0.72 0.11 0.18 454_4% if both strands >0 0.43 0.05 0.03 0.09 0.13 0.61 0.19 0.30 0.09 454_5% if both strands >0 0.12 0.15 0.14 0.16 0.09 0.64 0.11 0.12 454_7% if both strands >0 0.16 0.61 0.12 0.13 0.10 0.06 0.47 454_8% if both strands >0 0.45 0.20 0.18 0.11 0.09 0.66 0.06 454 9% if both strands >0 0.08 0.25 0.17 0.00 0.03 0.13 0.69

D. Comparison between specific & total number of mutations identified by 4 platforms


Average correlation 0.67, considered as rather good correlation

Samples	>:	1%	>3%		>1%		>1%		IG	
	PR	RT	PR	RT	PR	RT	PR	RT	PR	RT
61486	22	57	17	29	ND	ND	14	51	16	19
63716	19	49	13	24	13	28	12	32	8	15
64061	14	24	13	11	17	27	11	22	11	13
64340	30	36	16	16	14	13	11	17	8	10

Conclusions:

- ✓ Deep sequencing may be more sensitive for DRM detection, though the clinical significance of our observations requires long term follow-up.
- PBMCs derived HIV DNA can be utilized as an alternative to plasma RNA samples, for more sensitive prediction of HIV mutations.
- Correlation between the sequences obtained by the 3 NGS platforms is rather strong, most TG mutations were detected by NGS at frequency higher than 20%.
- / DeepChek[®]-HIV (CE-IVD marked) is compatible for routine clinical genotyping of 454, GSJ, data.

A complete bioinformatics solution such as the DeepChek[®]-HIV to analyze IonTorrent and MiSeq data is, to enable efficient use in the clinical HIV laboratory.

