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ABSTRACT

Viral sequence classification has wide applications
in clinical, epidemiological, structural and functional
categorization studies. Most existing approaches
rely on an initial alignment step followed by clas-
sification based on phylogenetic or statistical algo-
rithms. Here we present an ultrafast alignment-free
subtyping tool for human immunodeficiency virus
type one (HIV-1) adapted from Prediction by Partial
Matching compression. This tool, named COMET,
was compared to the widely used phylogeny-based
REGA and SCUEAL tools using synthetic and clinical
HIV data sets (1 090 698 and 10 625 sequences, re-
spectively). COMET’s sensitivity and specificity were
comparable to or higher than the two other subtyping
tools on both data sets for known subtypes. COMET
also excelled in detecting and identifying new recom-
binant forms, a frequent feature of the HIV epidemic.
Runtime comparisons showed that COMET was al-
most as fast as USEARCH. This study demonstrates
the advantages of alignment-free classification of vi-
ral sequences, which feature high rates of variation,
recombination and insertions/deletions. COMET is
free to use via an online interface.

INTRODUCTION

The human immunodeficiency virus type one (HIV-1) circu-
lates as a number of distinct types, subtypes and recombi-
nant forms. HIV-1 group M, the predominant type of the
worldwide epidemic, is currently classified into nine pure
subtypes (PURE) and 55 circulating recombinant forms
(CRFs) recorded in the Los Alamos National Laboratory
(LANL) database (1). Viral subtype impacts disease pro-
gression (2,3,4,5,6), treatment response (7,8,9,10) and vac-
cine development (11). Viral subtype identification is also
an informative and reliable tool for epidemiological stud-
ies and surveillance, transmission follow-up and design of

prevention strategies (12,13). Yet correct subtyping of clin-
ical HIV-1 samples remains a challenging task, particularly
in the case of CRFs and of unique recombinants forms
(URFs) (14,15). This issue is of growing importance, as the
prevalence of recombinant forms (15,16) has reached 20%
of new infections (17) and continues to expand, fueling the
complexity of the HIV pandemic.

Protocols for HIV-1 subtype determination share a com-
mon approach. The query sequence is compared to a set
of reference sequences, generally using a sliding window,
and the best match is returned as the putative subtype.
The vast majority of currently used tools rely on a prelim-
inary alignment step to measure similarity with the refer-
ence set. The REGA (18) and SCUEAL (19) tools extend
the alignment with phylogenetic analyses, allowing the de-
tection and identification of recombinant forms using ei-
ther a sliding window with bootstrap support (REGA) or
the phylogenetic likelihood of a mosaic (SCUEAL). Alter-
natives include position-specific scoring matrices (20) and
profile Hidden Markov models (21,22).

The choice of one alignment as the correct alignment
masks uncertainty as to how statistically distinct the cho-
sen alignment is from other possible alignments. Determi-
nation of the best alignment also depends on the choice of
algorithm and parameters (23). Alignment confidence can
be measured (24). This, however, imposes additional com-
putational overhead, particularly so for sequences compris-
ing numerous mixtures and indels (25). While these factors
may not have significant impact on classifications based on
the highly conserved pol gene, the situation is less clear in
more variable regions of the HIV genome, such as env, es-
pecially in the context of novel forms.

A small but growing literature demonstrates that se-
quence similarity can be quantified in terms of the amount
of information shared between the two sequences. This can
be measured by various data compression schemes, which
do not require reference to alignment (26,27,28,29). For ex-
ample, a Markov model expresses the probability of observ-
ing a given nucleotide given the previous k nucleotides in the
sequence, i.e. its genomic context. The similarity between
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two sequences can be measured by how closely a Markov
model built from the first sequence matches context-specific
base frequencies in the second. Markov models are fast to
build and to run, and have proved their worth in a variety
of genomic sequence analysis contexts (30).

This work introduces COMET (COntext-based Model-
ing for Expeditious Typing), an alignment-free typing algo-
rithm for HIV-1 and other viruses (HCV). The approach
of COMET is inspired by the Prediction by Partial Match-
ing compression algorithm (31), which has repeatedly and
independently been shown to provide high classification ac-
curacy for biological sequences (32,33). Benchmarking re-
sults for HIV on both synthetic and clinical data suggest
significant improvements over existing tools in classifica-
tion accuracy, ability to recognize known and novel re-
combinants, reproducibility and running time. COMET is
freely available via an anonymous web-based interface at
http://comet.retrovirology.lu, and for academic usage as a
stand-alone Java jar file by request to the corresponding au-
thor.

The COMET algorithm

COMET begins by building variable-order Markov mod-
els over nucleotide frequencies for each of a set of reference
sequences. Given a query, COMET uses these models to es-
timate, for each nucleotide in the query, the log likelihood of
observing this base for each of the reference types. This pro-
cedure returns a matrix with rows corresponding to the ref-
erence types and columns representing the log likelihoods.
A decision tree (see Figure 2) is applied to this matrix to
determine the final subtype call. The final call is one of: a
reference type (PURE or CRF); a PURE reference type that
may come from a non-recombinant region of a CRF (both
the PURE and potential CRF are indicated); or UNAS-
SIGNED in the case of a novel recombinant form or a query
sequence whose actual classification is ambiguous.

Building and scoring the Markov models

The reference set for COMET version 1.0 is the full 2010
LANL subtype reference alignment, which includes 170
full-length sequences representing each pure subtype (A–
J) and CRF (CRF 01 AG–49 cpx). This set was com-
plemented by 45 full-length sequences from the LANL
database (3 A1, 3 B, 2 C, 2 D, 2 F1, 1 G, 1 H and CRF
3 01 AE, 4 02 AG, 2 03 AB, 1 04 cpx, 2 06 cpx, 1 07 BC, 2
08 BC, 2 09 cpx, 1 11 cpx, 2 12 BF, 1 15 01B, 1 18 cpx, 2
20 BG, 1 25 cpx 1, 1 29 BF, 1 32 06A1, 2 34 01B, 1 42 BF
and 1 44 BF) after manual verification that the sequence
did indeed represent the stated type. Each reference type is
represented by a variable-order Markov model that stores
the probability of observing a given base conditional on the
preceding k bases, with k ranging from 0 to 8. For k = 0, the
model considers the frequency of each of the four bases in
the reference sequences. The Markov models for each sub-
type are stored in an N-ary tree (Figure 1). When building
and fitting the model, ambiguous codes are ignored.

The initial stage of COMET’s algorithm uses these
Markov models to compute a matrix giving the log likeli-
hood of each reference subtype (row) at each position of the

sequence (column). For a given model and query sequence,
the model selects, for each base in the query, the k-mer, or
context, which predicts the base with the best accuracy. This
induces a bias toward the longest possible context, while al-
lowing the prediction to jump to a shorter context if the lat-
ter provides higher accuracy.

The decision tree

The log-likelihood matrix is passed to COMET’s decision
tree. The decision tree incorporates a sliding window to per-
form fine-grained comparisons of reference subtype like-
lihoods. This allows more detailed investigation of poten-
tial recombination than simply outputting the most likely
reference type. Finding that two different reference sub-
types have similar likelihoods over one or more sections
of the query provides evidence that the query represents a
unique or novel recombinant form. Alternately, the query
may come from an ambiguous genomic region. For exam-
ple, the pol gene of CRF 14 BG originates entirely from
subtype G. Here, the decision tree’s sliding window allows
COMET to report whether or not the query sequence has
sufficient features to allow a clear distinction between the
PURE and CRF types.

COMET begins by using the maximal row sum of the log-
likelihood matrix to generate an initial indication of either
a PURE or CRF subtype. An initial PURE indication is
scanned for recombination by sliding over the matrix with
a window of 100 base pairs (bp) and a stepping size of 3
bp. Log-likelihood differences are computed between all re-
maining reference subtypes (including CRFs) and the initial
assignment S, considering only the 100 bp in the window,
and using the difference in the log likelihoods to compute
the ratio. As long as this difference remains less than a pre-
set threshold (��(other) − ��(S) ≤ 28, see below for deter-
mination of this level) for every window, COMET assigns
the sequence to the initially determined PURE subtype. A
potential recombination event is signaled if, in any window,
the threshold is crossed. In this case COMET states UNAS-
SIGNED.

An initial indication of CRF is given a more nuanced
treatment. COMET begins by putatively assigning the most
likely major PURE subtype (i.e. excluding CRFs) as deter-
mined by the row sums of the log-likelihood matrix. A scan
for recombination is made as above. If the PURE type is
confirmed, COMET returns the PURE type with an indica-
tion to check for the initially indicated CRF. If recombina-
tion is signaled in any window, a second scan is made. This
second scan follows the same protocol, this time compar-
ing each reference subtype to the initially indicated CRF.
If the threshold is not surpassed in any window, COMET
returns the initially indicated CRF. Otherwise COMET re-
turns UNASSIGNED.

Determining the best model order, window size and threshold
for recombination detection

The optimal context length, window size and selection
thresholds were determined empirically. The sensitivities of
COMET in assigning the correct subtype/CRF or identi-
fying an URF were determined for kmax from 1 to 15, for
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Figure 1. N-ary tree representation of a Markov model, with the context ‘CGT’ highlighted. Each node (circle) has an associated frequency table (box)
over the next base in the sequence following the context.

different combinations of window sizes (50, 75, 100, 200,
300 and 400 bp), and for PURE and CRF likelihood ratio
thresholds (difference in log likelihood varying from 18 to
38). The best tradeoff between sensitivities and Akaike in-
formation criterion (AIC) scores were observed for kmax =
8 with a window size of 100 bp and log-likelihood differ-
ence thresholded of 28 for both PURE and CRFs. These
parameters were therefore chosen as COMET’s default val-
ues. Sensitivity for detecting PURE and CRFs increases
asymptotically toward 1.00 with the log-likelihood thresh-
old, and is nearly level for the chosen thresholds for most
subtypes. Specificity to PURE/CRFs varies only over the
range 0.995–1.00 for all thresholds tested. Small variations
to the thresholds should have minimal effect on results. The
assays were conducted using synthetic variation and syn-
thetic recombinant data sets (construction described below)
containing 1–10% variation. Testing using only synthetic
variation would have optimized the parameters solely for
the detection of known categories (pure subtypes and com-
mon recombinant forms, CRF) and not for URFs. Parame-
ter optimization was carried out on different data sets than
those used for evaluation. Details of these investigations are
reported in the Supplementary Notes, Supplementary Table
S1 and Supplementary Figure S1.

Validation on synthetic data

COMET’s performance was evaluated using a large panel
of synthetically modified PURE and CRF sequences.
COMET’s performance was then compared with the RE-
GAv2 (18) and SCUEAL (19) tools, commonly recognized
as the current ‘best of breed’ of published subtyping tools
(34). This comparison was based on additional synthetic
data sets adopted to fit the limitations of these tools, con-
structed using parameters under which they are expected to
perform best. For each evaluation, we report how the de-
gree of variation and recombination affect sensitivity and
specificity, per subtype. Running times are also given.

Synthetic variation

Synthetic sequences were created from the full length HIV-
1 sequences in the LANL subtype reference alignment
(1), including all recorded CRFs, after excluding non-
M sequences, i.e. groups ‘O’, ‘N’, ‘P’ and ‘CPZ’, that is,
158 whole-genome sequences representing 58 subtypes and
CRFs. Synthetic variation was introduced into each sam-
ple by randomly replacing an increasing proportion of nu-
cleotides in the input reference sequence by a different nu-
cleotide. The amount of variation increased from 0% to 20%
with 1% increments. One full-genome synthetically varied
sequence was generated from each input sequence at each
noise level. Test sequences were extracted from the result-
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Figure 2. Subtype decision tree. The row sums of the log-likelihood matrix provide the overall likelihood of the query sequence to belong to each subtype.
These sums are ordered to identify the most likely subtype (S) and the most likely pure subtype (PS). If the query sequence has the highest likelihood of
belonging to a pure subtype (i.e. S = PS), this likelihood is challenged against the likelihoods of the sequence to be of any other subtype (other, PURE or
CRF) by sliding over the matrix by 100-bp windows with a stepping size of 3 bp. If the difference between the row sums within the current window remains
below the recombination threshold (i.e. 28) for each window, the pure subtype is assigned. Otherwise, COMET returns the result ‘UNASSIGNED’. If
the query sequence has the highest likelihood of being a CRF, COMET performs a similar challenge, but only against the most likely pure subtype (PS)
at first. If this difference remains below the recombination threshold (i.e. 28), COMET assigns the pure subtype (S) with an indication to check for the
CRF, indicating a region where the CRF is pure. If the difference is higher than the recombination threshold, a second scan is performed as for the PURE
situation, challenging each subtype against the initially assigned CRF.
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ing 3318 full-genome sequences using sliding windows of
increasing length (100, 200, 400, 600, 800, 1200 and 1600
bp) applied from sequence position HXB2 790 (gag start)
to position 9417 (nef end), with stepping sizes half the size
of the window length (e.g. for a window size of 400 bp, the
stepping size was 200 bp). The resulting test set comprised 1
090 698 sequences of different lengths and noise levels cov-
ering the entire HIV genome.

The synthetic variation data set used for comparison
to REGAv2 and SCUEAL was limited as follows. Since
SCUEAL only analyzes the pol gene (19), sequences were
taken from this region, including the RNaseH and integrase
(start position: HXB2 2085; end position: 5096). Compar-
isons were limited to subtypes recognized by REGAv2:
the 10 PURE subtypes and the first 14 listed CRFs (CRF
01 AE - 14 BG). To contain the size of the final data set
within the bounds imposed by the running times of the
other algorithms, only one recorded example sequence of
each type was used, and five levels of synthetic variation:
0%, 2.5%, 5%, 7.5% and 10%. Samples were taken from
each input reference sequence by sliding over the sequences
with window sizes of 200, 400, 800, 1200 and 1600, and with
stepping sizes half the window size, as above, except for the
smallest window. The resulting test set comprised 5125 se-
quences.

Synthetic recombination

Synthetic recombinant sequences were generated from the
39 sequences that represent pure subtypes in the LANL ref-
erence set. One sequence was taken as background, the sec-
ond as insertion. A sliding window was applied to the se-
quence pair starting at position 790 (gag start) and ending
at position 9417 (nef end), and the portion of the back-
ground sequence covered by the window was replaced by
the corresponding insert sequence. The following window
lengths and step sizes were used: 100:100; 200:200; 300:200;
400:200; 600:200; 800:200. Each sequence was used once
as a background for inserts from all remaining sequences;
the 1482 possible permutations yielded 405 132 full-genome
synthetic recombinants.

Synthetic recombination data for comparison to RE-
GAv2 and SCUEAL were limited by choosing only one rep-
resentative sequence for each subtype. In addition, only the
pol gene was included. Insert window lengths and steps were
as above. The resulting data set contained 10 780 synthet-
ically recombined pol gene sequences representing the 110
possible permutations of the source genotypes.

Validation on clinical data

COMET’s reliability and practical utility was assessed by
testing its ability to identify clinical sequences downloaded
from the LANL database, alone and in comparison with
REGAv2 and SCUEAL. Sequence selection was based on
the following inclusion/exclusion criteria applied to the 174
894 pol sequences retrieved from the LANL database: (i) se-
lect all sequences with a minimum fragment length of 800
bp and a maximum of 8000 bp. (ii) Exclude sequences used
to train COMET and all duplicate sequences (identical and
subsets of longer sequences) (remaining n = 112 997). (iii)

Exclude subtypes represented by less than 50 samples. For
subtypes with more than 1000 sequences, select 1000 at ran-
dom (remaining n = 11 341). Clinical samples represented
by less than 50 pol sequences were excluded because com-
parisons based on such small sample sizes are not represen-
tative. For example, referenced subtypes other than A1, B,
C, D, F, G, 01 AE, 02 AG represent only 0.59% of new in-
fections in Europe (13), and only 3.31% of the sequences in
the pol LANL data set. (iv) Retain only PURE subtypes and
the first 14 listed CRFs (CRF01 AE - 14 BG) (remaining n
= 10 625). The subtype/CRF assigned by the submitting
author and stored in the LANL HIV database was consid-
ered to be correct. Comparison was limited to the first 14
listed CRFs as REGAv2 does not recognize other subtypes.

Comparison to USEARCH

To demonstrate the claim of ultrafast subtyping, we com-
pared the performance and running times of COMET and
USEARCH (35), one of the fastest sequence search tools.
Given a query sequence, USEARCH can quickly find the
closest matching subtype reference sequence in its inter-
nal reference set. Sequence search is generally not rec-
ommended for subtyping (it cannot identify novel forms,
among other limitations), but its use to provide prelimi-
nary subtype indications has been endorsed (36). To en-
sure equitable comparisons, USEARCH’s reference set was
here created using the same training data used for COMET,
and COMET’s recombination detection module was de-
activated. The sensitivity, specificity and running times of
COMET and USEARCH were compared using both the
full-length synthetic variation (1 090 698 sequences) data
set and the pol clinical data set (105 752 sequences). The
clinical data set was as above, additionally excluding URFs
as these cannot be classified by the USEARCH method-
ology. Sensitivity and specificity on the clinical data set
were calculated by considering the subtype stored in the
LANL database as correct. Reported running times are
a mean of 10 independent runs. Tests were made using
USEARCH version 7.0.1090 with the following parame-
ters: usearch global, id=0.8, strand=plus. Preliminary in-
vestigations showed that these settings gave USEARCH the
highest sensitivities.

RESULTS

Synthetic variation

COMET showed high specificity (>93% for PURE sub-
types and >99% for CRFs) for all sequence lengths and
even for high levels (20%) of noise (Table 1). The sensitivity
of COMET was very high (>99% for PURE subtypes and
>87% for CRFs) for sequences longer than 800 bp and con-
taining up to 10% noise (Table 1). For shorter sequences,
the sensitivity of COMET remained >97% and >78% for
PURE and CRFs, respectively, for 400-bp-long sequences
(Table 1). When more noise was introduced (up to 14%),
sensitivity was >97% for PURE and >69% for CRFs for
1200-bp-long sequences (Table 1). For PURE sequences,
sensitivity remained >83% for 1200-bp-long sequences even
when sequences contained 18% noise. These figures indicate
that COMET features very high sensitivity and is able to
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correctly classify sequences with the lengths and variation
typically encountered in clinical practice (circa 800–1200
bp).

The performance of COMET was also compared to that
of REGAv2 and of SCUEAL using synthetic sequences
ranging from 200 to 1600 bp in length and comprising
0–10% noise. COMET outperformed both REGAv2 and
SCUEAL on PURE and CRF sequences in terms of sensi-
tivity. Specificity was high and comparable for all three tools
for both PURE and CRFs, regardless of sequence length
and noise level (Figure 3).

Synthetic recombination

The synthetic recombination data set was generated to as-
sess the capacity of COMET to classify URFs. On a data set
of 405 132 synthetic recombinant sequences, COMET cor-
rectly identified >99% of synthetic recombinant forms for
inserts longer than 400 bp, identifying the correct mixture
in 96.5% of the cases (Table 2). For shorter inserts (200 bp),
COMET detected and correctly identified 97% (Table 2).

When compared to the two other subtyping tools us-
ing a similar synthetic recombinant data set restricted to
the pol gene, COMET clearly outperformed both REGAv2
and SCUEAL, detecting 92% of the recombinant forms
where SCUEAL detected 84% and REGAv2 only 58% (Ta-
ble 3). COMET and SCUEAL reliably detected recombi-
nants composed of 200-bp-long inserts (90% and 75%, re-
spectively), whereas REGAv2 required inserts of 400 bp to
reach comparable performance (78.1% detection rate). Over
99% of the synthetic recombinants were correctly identi-
fied by COMET for 800-bp- and 600-bp-long fragments
against 92% and 91% for REGAv2 and SCUEAL, respec-
tively. COMET correctly identified 90% of short inserts (200
bp), compared to 59% for SCUEAL and 18% for REGAv2
(Table 3).

Clinical sequences

The performance of COMET, REGAv2 and SCUEAL was
further compared using 10 625 clinical patient-derived pol
sequences belonging to PURE subtypes A–J or CRF01 AE
to CRF14 BG. Specificity was comparably high for all
three tools (mean >=99.7%). Sensitivities were also com-
parable for PURE subtypes (COMET: 87.8%; REGAv2:
86.6%; SCUEAL: 84.8%), whereas for CRFs the sensitivity
of COMET was remarkably higher (COMET: 92.7%; RE-
GAv2: 72.3%; SCUEAL: 44.1%) [Table 4(a) and (b)].

All three tools had the lowest sensitivities in detecting
subtypes labeled as A2 and F2 in the LANL HIV database
(see Table 4). In 92.7% of cases where COMET and the
LANL label disagreed over an A2 assignment, COMET
indicated that the sequences were recombinants (CRFs
or URFs) containing A2 sequences. Both REGAv2 and
SCUEAL agreed with COMET in 73% of the cases.

Likewise, for subtype F2, 39.1% of the sequences not
identified as F2 by COMET were recombinants also iden-
tified as such by both other tools, and 43.5% corre-
sponded to F1 sequences according to all three tools. In
five cases (10.8%), COMET identified a recombinant where
SCUEAL assigned F2 and REGA either F1 or a recombi-
nant as well, and in two cases COMET did not identify an

F2 sequence identified as such by REGAv2 and SCUEAL.
These results suggest that many of the disagreements be-
tween the subtype assigned by COMET and the subtype
stored in LANL are due to an incorrect labeling by the sub-
mitting author.

For CRFs, COMETs sensitivity was >87% for all tested
samples except CRF11 cpx (82.8%) [Table 4(b)]. For this
CRF, COMET agreed with both other tools in identify-
ing a URF, whereas in 30.4% of the cases, REGAv2 and
SCUEAL agreed with the subtype stored in the LANL
HIV database and in one case, all three tools disagreed
with the LANL label. REGAv2 had difficulty identifying
CRF02 AG and CRF12 BF (Table 4b), perhaps partially
reflecting the fact that these CRFs do not feature recombi-
nation in the pol region.

The low sensitivity of SCUEAL in typing CRFs is
mainly due to the fact that the algorithm often desig-
nated sequences as ‘recombinant’ without providing fur-
ther specificity. This was mostly observed for CRF02 AG,
CRF07 BC and CRF12 BF and to some extent for
CRF06 cpx. In a three-way comparison, the three tools
agreed for 7130 (67.1%) pol sequences. The three tools dis-
agreed in 233 cases (2.2%). In all other cases, two tools
agreed and disagreed with the third (Figure 4).

Taken together, these results highlight the inherent diffi-
culties of typing viral sequences in the clinical setting, par-
ticularly regarding the confidence of the result issued by
each tool. Different approaches should be used in parallel,
calling for manual inspection when different tools disagree,
as no guidelines exist to date.

Running times

Running times of COMET on the different data sets were
as follows. The 1 090 698 synthetic variation sequences were
processed in 320 s, the 405 132 synthetic recombination se-
quences in 3404 s and the 161 901 sequences from LANL in
119 s. All measured times are the mean time over 10 runs of
the algorithm. These timing results cannot be neatly sum-
marized into a mean throughput rate since COMET’s run
time is linear in sequence length while the sequences in these
data sets ranged from 100 bp to 8769 bp in length. Mean
throughput is better measured by observing that COMET
took 0.1 s to process the 100 random sequences from the
synthetic variation pol gene sequences (each 1200 bp), indi-
cating a throughput of 0.001 seconds/sequence. SCUEAL
required 2811 s to analyze the same 100 sequences (28.1
s/sequence, for details see Supplementary Notes). In com-
parison, REGAv2 claims to take 28.8 s to analyze one pol
sequence (34). It is not specified, however, if these reported
timings are based on the entire pol gene or only the 1300-bp
protease-reverse transcriptase region.

Comparison to USEARCH

For the synthetic data set, mean sensitivities over all noise
levels and window sizes of COMET and USEARCH were
76.5% and 82.2%, respectively. The sensitivity of USE-
ARCH was slightly higher than that of COMET (up to
0.9%) for sequences containing 0–8% noise; for higher noise
levels, USEARCH had higher sensitivities than COMET
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Table 1. Sensitivity and specificity of COMET to type known sequences with varying levels of noise

(a1) PURE sensitivities Noise

Fragment size n 0.0% 2.0% 4.0% 6.0% 8.0% 10.0% 12.0% 14.0% 16.0% 18.0% 20.0%

100 494 256 98.4% 96.5% 92.6% 87.2% 80.8% 72.9% 63.1% 53.6% 44.2% 38.3% 32.3%
200 242 235 99.9% 99.8% 99.0% 97.5% 94.9% 89.5% 82.1% 71.0% 61.3% 52.9% 44.1%
400 128 604 100.0% 100.0% 100.0% 99.9% 98.9% 97.6% 93.1% 87.0% 78.1% 68.8% 57.2%
600 87 402 100.0% 100.0% 100.0% 100.0% 99.9% 98.9% 96.3% 91.9% 86.2% 75.2% 63.5%
800 65 352 100.0% 100.0% 100.0% 100.0% 99.8% 99.5% 97.1% 95.4% 89.5% 78.4% 66.6%
1200 43 008 100.0% 100.0% 100.0% 100.0% 99.5% 100.0% 99.1% 97.4% 92.9% 83.4% 70.3%
1600 29 841 100.0% 100.0% 100.0% 100.0% 99.5% 100.0% 99.2% 97.8% 93.7% 84.8% 71.0%

(a2) PURE specificities Noise
100 494 256 93.8% 93.8% 93.7% 93.6% 93.5% 93.5% 93.5% 93.5% 93.5% 93.7% 93.8%
200 242 235 96.9% 96.1% 95.2% 94.6% 94.2% 93.9% 93.7% 93.6% 93.6% 93.7% 93.9%
400 128 604 98.6% 97.9% 97.0% 96.1% 95.4% 94.7% 94.3% 94.0% 93.8% 93.8% 94.0%
600 87 402 99.3% 98.8% 98.1% 97.2% 96.3% 95.5% 94.8% 94.3% 94.1% 94.0% 94.2%
800 65 352 99.5% 99.2% 98.6% 97.9% 97.0% 96.0% 95.3% 94.7% 94.3% 94.1% 94.3%
1200 43 008 99.8% 99.6% 99.3% 98.8% 98.1% 97.0% 96.2% 95.4% 94.8% 94.4% 94.5%
1600 29 841 99.9% 99.7% 99.5% 99.2% 98.7% 97.8% 96.8% 96.0% 95.2% 94.6% 94.7%

(b1) CRF sensitivities Noise
100 494 256 91.0% 85.4% 77.2% 66.7% 56.1% 46.1% 37.0% 28.7% 22.1% 16.6% 12.6%
200 242 235 97.6% 95.6% 90.7% 83.7% 75.3% 64.7% 52.2% 41.6% 31.2% 21.9% 15.8%
400 128 604 99.5% 99.1% 97.3% 93.4% 88.2% 78.3% 66.6% 54.4% 41.3% 28.9% 19.7%
600 87 402 99.7% 99.7% 98.9% 96.4% 92.6% 84.3% 74.4% 61.4% 46.9% 32.6% 21.3%
800 65 352 99.9% 99.8% 99.5% 97.0% 94.5% 87.6% 78.3% 64.8% 48.7% 34.2% 22.8%
1200 43 008 99.8% 99.9% 100.0% 97.3% 96.1% 91.2% 82.9% 69.0% 52.8% 36.9% 23.0%
1600 29 841 100.0% 100.0% 100.0% 97.7% 97.8% 91.9% 84.7% 71.7% 53.8% 38.1% 25.4%

(b2) CRF specificities Noise
100 494 256 99.7% 99.7% 99.6% 99.6% 99.5% 99.4% 99.4% 99.4% 99.3% 99.3% 99.3%
200 242 235 99.9% 99.9% 99.8% 99.8% 99.7% 99.7% 99.7% 99.6% 99.6% 99.6% 99.6%
400 128 604 99.9% 99.9% 99.9% 99.9% 99.9% 99.8% 99.8% 99.8% 99.7% 99.7% 99.7%
600 87 402 100.0% 100.0% 99.9% 99.9% 99.9% 99.9% 99.8% 99.8% 99.8% 99.8% 99.8%
800 65 352 100.0% 100.0% 99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 99.8% 99.8% 99.8%
1200 43 008 100.0% 100.0% 100.0% 99.9% 99.9% 99.9% 99.9% 99.9% 99.8% 99.8% 99.8%
1600 29 841 100.0% 100.0% 100.0% 100.0% 99.9% 99.9% 99.9% 99.9% 99.9% 99.8% 99.8%

A synthetic data set was generated from reference sequences from the LANL HIV database, by randomly introducing mutations throughout the
genome (‘noise’). The sensitivity and specificity of COMET was calculated for varying degrees of noise (0–20%) introduced into PURE subtypes (A–
J), (Tables a1 and a2) or CRFs (CRF01 AE-CRF49 cpx) (Tables b1 and b2). Sequences of different lengths were submitted to COMET.

Table 2. Sensitivity and specificity of COMET to detect and identify synthetic recombinants

Insert size n URF found Composition found

100 118 508 84.5% 84.1%
200 59 254 96.9% 96.8%
300 57 876 98.7% 98.7%
400 57 876 99.6% 99.6%
600 56 498 99.9% 99.9%
800 55 120 100.0% 100.0%

Mean 96.6% 96.5%

A synthetic recombination data set was generated by replacing DNA sequences by the same sequence from another subtype. Different sizes of insert (from
100 bp to 800 bp) were introduced throughout the genome, generating 405 132 different recombinants. In the table, ‘URF found’ means that COMET
recognized the sequence as ‘UNASSIGNED’. ‘Composition found’ means that COMET correctly identified the subtypes composing the background and
the insert.

regardless of window size (Supplementary Figure S3). For
synthetic CRFs, COMETs sensitivity was lower than that of
USEARCH (Supplementary Figure S3). Manual inspection
showed that for 39% of the misassignments, COMET as-
signed a component of the CRF rather than the CRF itself.
This behavior was particularly prominent in regions where
the CRFs comprise no breakpoints. This observation high-
lights the importance of the recombination module in dis-
criminating between PURE subtypes and CRFs.

In contrast, when challenged with the clinical pol data
set, the sensitivity of COMET was higher than that of
USEARCH for PURE subtypes and CRFs (Supplemen-
tary Figure S3). For both tools, the lowest sensitivities were
recorded for subtypes A2 and G, as well as for subtype F1
for USEARCH. Inspection of the most common disagree-
ments between the subtype assigned by COMET or USE-
ARCH and the subtype stored in the LANL HIV database
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Figure 3. Sensitivities and specificities of COMET, REGAv2 and SCUEAL assessed using the synthetic variation data set spanning the pol region.

Table 3. Detection and identification of unknown recombinants by COMET, REGAv2 and SCUEAL

COMET REGAv2 SCUEAL

Insert size n URF found
Composition
found URF found

Composition
found URF found

Composition
found

100 3300 68.6% 67.9% 1.0% 0.9% 49.5% 31.5%
200 1650 90.4% 90.1% 18.5% 17.5% 75.3% 58.7%
300 1540 96.2% 96.1% 56.5% 54.2% 88.3% 74.8%
400 1540 97.9% 97.9% 78.1% 74.2% 94.6% 84.4%
600 1430 99.7% 99.7% 96.5% 92.0% 97.5% 91.5%
800 1320 99.9% 99.9% 96.9% 94.9% 99.1% 95.5%

Mean 92.1% 91.9% 57.9% 55.6% 84.1% 72.7%

The synthetic recombination data set was restricted to the pol region, and one recombinant was selected for each pattern, leading to 10 780 sequences for
this analysis. In the table, ‘URF found’ means that COMET assigned the sequence as ‘unassigned’, REGAv2 assigned the sequence as ‘check the bootscan’
or ‘check the report’ and SCUEAL assigned the sequence as ‘complex’ or ‘recombinant’. ‘Composition found’ means that the tool correctly identified the
subtype of the background and of the insert composing the synthetic recombinant.

again showed that the subtyping tools assigned a CRF com-
prising the subtype stored in the LANL database.

COMET analyzed the synthetic variation data set in 284 s
and USEARCH in 179 s. For the clinical data set, COMET
required 78.7 s and USEARCH 33.6 s. Notably, further
testing on synthetic data suggests that COMET’s time re-
quirements increased only slightly and in a linear fash-
ion in response to noise, while USEARCH’s grew quasi-
exponentially to nearly double COMET’s time at a noise of
20% (Supplementary Figure S4). Taken together, these re-
sults suggest that in this setup, running times for COMET
and USEARCH are on the same order of magnitude.

COMET online tool

COMET can be accessed via an on-line interface hosted
at http://comet.retrovirology.lu. The interface allows direct
uploading of sequences in fasta format, or for sequences to

be pasted into a web form. COMET returns the subtype for
each sample. The results can be copy-pasted or downloaded
in comma-separated value format.

DISCUSSION

The benchmarking tests show that COMET was able to
accurately and reliably subtype more sequences and more
types of sequences orders of magnitude faster than cur-
rent ‘best of breed’ tools. COMET was robust in the face
of noise and well able to identify both rare and novel re-
combinant forms. Its results are consistent both on short se-
quences of a few hundred base pairs and on whole genome
sequences. These results agree with a recent comparison of
eight subtyping algorithms conducted by an unrelated re-
search group that concluded that COMET is one of the best
performing subtyping tools (34).
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Table 4. Sensitivity and specificity of COMET, REGAv2 and SCUEAL to type clinical patient-derived sequences retrieved from the LANL database

COMET REGAv2 SCUEAL

(a) PURE n Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

A1 1000 97.0% 99.9% 95.7% 99.4% 80.2% 100.0%
A2 142 71.1% 100.0% 72.5% 100.0% 76.1% 100.0%
B 1000 99.6% 99.8% 96.2% 99.9% 97.6% 99.9%
C 1000 98.9% 100.0% 99.5% 99.6% 91.8% 99.9%
D 1000 92.4% 100.0% 87.2% 100.0% 86.8% 100.0%
F1 1000 93.1% 99.8% 96.8% 99.4% 87.8% 99.8%
F2 184 75.0% 100.0% 53.8% 100.0% 77.7% 100.0%
G 1000 89.0% 99.9% 89.9% 98.6% 79.5% 98.9%
H 97 74.2% 100.0% 87.6% 100.0% 85.6% 100.0%

Mean 87.8% 99.9% 86.6% 99.7% 84.8% 99.8%

(b) CRF n Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
01 AE 1000 97.5% 100.0% 93.7% 100.0% 68.3% 100.0%
02 AG 1000 95.6% 99.5% 14.8% 100.0% 26.6% 99.9%
06 cpx 823 92.5% 100.0% 84.2% 100.0% 40.0% 100.0%
07 BC 581 97.4% 100.0% 97.2% 100.0% 14.8% 100.0%
08 BC 365 95.9% 100.0% 91.0% 100.0% 77.5% 100.0%
11 cpx 116 82.8% 100.0% 75.0% 100.0% 72.4% 100.0%
12 BF 317 87.1% 100.0% 50.2% 100.0% 9.1% 100.0%

Mean 92.7% 99.9% 72.3% 100.0% 44.1% 100.0%

This data set includes 10 625 sequences spanning pol.

Figure 4. Agreement between the three subtyping tools on the subtype
assigned to clinical patient-derived sequences retrieved from the LANL
database. This data set includes 10 625 sequences spanning pol.

COMET’s speed results from dispensing with both full
alignment and with tree-building. This makes it blind to
evolutionary effects such as variable substitution rates,
which tend to be well captured by alignment-based meth-
ods. Yet it also implies that COMET will not suffer from

artifacts induced during an alignment step. COMET inher-
ently performs a more detailed recombination analysis than
allowed for by tree-based methods, regardless of how the
tree is built. Accurate tree reconstruction requires a min-
imum sequence length, estimated at ∼800 base-pairs for
HIV (18). The approach taken by COMET, in contrast, ac-
curately identifies the closest matching reference type within
a sliding window of 100 base-pairs. A caveat, however, is in
order. COMET bases its classification of query sequences
solely on the closest matches stored in COMET’s inter-
nal model. Generalizing the approach to classify other vi-
ral families or applications is dependent on the availabil-
ity of sufficient training sequences for those applications.
Additionally, the parameters used to determine the closest
match will need to be empirically tuned to the new species.
This was the case for Hepatitis C, and the version of the
COMET algorithm prepared for this virus has been ref-
erenced as a valid subtyping tool in the latest update to
the consensus HCV classification (37). Further extension to
other virus families or other microbial typing, however, will
have to contend with limits imposed by reference sequence
availability. Phylogenetic methods may better handle lim-
ited availability of training sequences by leveraging infor-
mation in the tree structure.

USEARCH’s speed comes from dispensing with a full
alignment. It only attempts alignment with the best match-
ing sequences in its database and terminates alignments
that are going poorly (35). This helps explain the varia-
tion in its sensitivity on simulated versus clinical data. Sim-
ulated query sequences were noisy versions of sequences
in USEARCH’s internal database. The author of USE-
ARCH reports that its speed is strongly dependent on the
data analyzed and does not report asymptotic behavior
(35). COMET’s worst runtime requirement, however, can
be quantified as O(nc) where n is the length of the input
sequence and c is the number of categories trained. This
allows analytical comparison to tools that require phylo-
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genetic analysis. Creating a single tree even via neighbor-
joining takes O(n2c3) operations, in addition to the cost
of measuring the required sequence similarities. COMET’s
speed advantage comes at a cost in memory, with the
strongest memory limit imposed by the maximal context
length. Within this limit, the memory requirement increases
linearly with the number of reference categories trained
(see Supplement for details). The current implementation of
COMET had a memory requirement of 487 MB for the N-
ary tree. Thus the time-memory tradeoff of COMET should
constitute a fading challenge for modern workstations.

COMET’s speed allows its use in large-scale studies. Sev-
eral large publically available data sets do not have com-
plete subtype information or have not rigorously quality-
controlled the recorded subtypes. Subtype assignments in
the LANL HIV database (1) represent only the best esti-
mate of the submitter at the time of submissions. Given the
inherent difficulties in subtyping and that not every submit-
ting author has accurate subtype determination as their pri-
mary research interest, it is likely that URFs and CRFs are
under-reported. We observed that COMET, REGAv2 and
SCUEAL all indicated that many of the sequences labeled
as subtype A2 or H were more likely to be recombinant
forms. Likewise, other large clinical cohorts that may not be
publically accessible due to privacy concerns still need to be
subtyped for epidemiological studies. It has been observed
that up to 12% of UK sequences cannot be confidently as-
signed to any previously defined subtype (15). Successfully
subtyping large data sets requires a tool that is both fast and
sensitive to novel recombinant forms.

COMET’s ability to handle short read lengths makes it
highly applicable for analysis of next-generation sequenc-
ing outputs. This could indicate, for example, if a patient
has a single or multiple infections, or allow better resolution
of quasispecies diversity circulating in the patient, including
detection of minority variants. Similar alignment-free meth-
ods have been successfully used for metagenomic assembly
from next-generation sequencing (30). Interpolated Markov
models with a variable-sized context-based approach have
previously been applied for microbial genome annotation
(38).

A close examination of the results from the synthetic
variation data shows that the level of variation between
the different referenced subtypes is not constant across the
genome. COMET’s sensitivity tends to be higher for the sec-
ond half compared to the first half of the genome (see Sup-
plementary Figure S2). This suggests that COMET could be
further improved by using a variable-sized window when de-
termining the log likelihood of the query sequence. A vari-
able window might also be important for recombination de-
tection, as the probability of recombination appears to be in
part a function of genetic location, be it constant portions of
the genome (39) or locations where recombination may give
a selective advantage (40). Additional improvements may
be possible from a more sophisticated approach to model
discrimination than the simple likelihood ratio, for example
Vuong’s suggestion of first normalizing or otherwise adjust-
ing the likelihoods before computing the ratio (41).

A number of the benchmarking results are based on syn-
thetically generated variation or recombination. These syn-
thetically altered sequences were derived assuming uniform

random noise. Biological change, however, is not uniform,
such as the just noted hot and cold regions for both vari-
ation and recombination (39,40). The use of uniform ran-
dom noise was a deliberate choice designed to mask as much
biological structure as possible, increasing the difficulty of
correct classification. The additional testing on clinical se-
quences downloaded from LANL demonstrates that the
method is equally applicable in clinical settings.

CONCLUSION

A context-based, rather than alignment-based, approach to
HIV-1 viral subtype determination is substantially faster
and more robust than previous methods. The COMET tool
can be applied in both clinical and epidemiological studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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