

Use of Innovative Information Systems Combining HIV-1 Genotypic and Phenotypic **Drug Resistance Interpretations For Routine and Research Applications**

Results

30th Annual Clinical Virology Symposium April 27 – 30, 2014 | Daytona Beach, Florida

Background

- Long-term management of HIV-1 infection requires individualized strategies tailored to each patient profile.
- The selection of antiretroviral (ARV) regimens needs to take into account the drug resistance patterns harbored by the individual.
- We have evaluated the ViroScore-HIV drug resistance algorithmic platform for routine clinical and research activities.
- This platform integrates genotypic analysis with multiple interpretative genotypic and phenotypic algorithms (Fig. 1A) to effectively track emergent resistance profiles that confer resistance to the 6 possible drug classes (Fig. 1B).

HIV - ANRS (v23, v22) HIV - Geno2Pheno (3.3) HIV - HIV Grade (2013, 20 HIV - Rega (9.0.0, 8.0.2) HIV - RenaGeno (2013, 20 HIV - RIS (2013, 2012) HIV - Stanford HIVdb (8.3.1 HIV - Stanford HIVdb (8.3.1	B All Relevant Information in One Single Page Report - NRTI Resistance - NNRTI Resistance - PI Resistance - PI Resistance - Fusion Inhibitors Resistance - Subtyping - Tropism - Drug Resistance Mutations
ViroScor C E LU/CA01/IV	

Methods

- ViroScore-HIV is a standardized and secured web solution, certified for In-Vitro Diagnostics (IVD) use which was installed and evaluated for the management of the routine clinical and research activities of 3 genotyping laboratories in Quebec, Canada (*Fig. 2*).
- Preliminary analyses on 50 sequences from our clinical database evaluated ViroScore-HIV on samples previously tested by the discontinued VircoType platform.
- The ViroScore-HIV platform was very flexible, providing algorithms for up to 8 different drug resistance guidelines spanning every protein of interest (protease, reverse transcriptase, integrase, GP41 and GP120 including tropism determination).
- Results (subtyping, variants calling and drug resistance) were compared to VircoType to assess the reliability and the userfriendliness of the application for diagnostics use.
- In addition, software was combined with VisibleChek, a data mining application tailored for the management of Sanger and Next Generation Sequencing (NGS) data, to assess usability for future research and clinical applications (Fig. 4).

AMERICAN SOCIETY FOR MICROBIOLOGY

Sayada⁴, Dimitri Gonzalez⁵, Bluma Brenner²

¹Centre Hospitalier de l'Université de Montréal, Montreal, Quebec ²Jewish General Hospital, Montreal, Quebec ³Laboratoire de santé publique du Québec/INSPQ, Montreal, Quebec

- reference laboratories were first analyzed.
- VircoType interpretations.
- v6.3.1 algorithm.
- tool.
- confirmed their usefulness.
- by our laboratories to generate 115 reports.

Conclusions

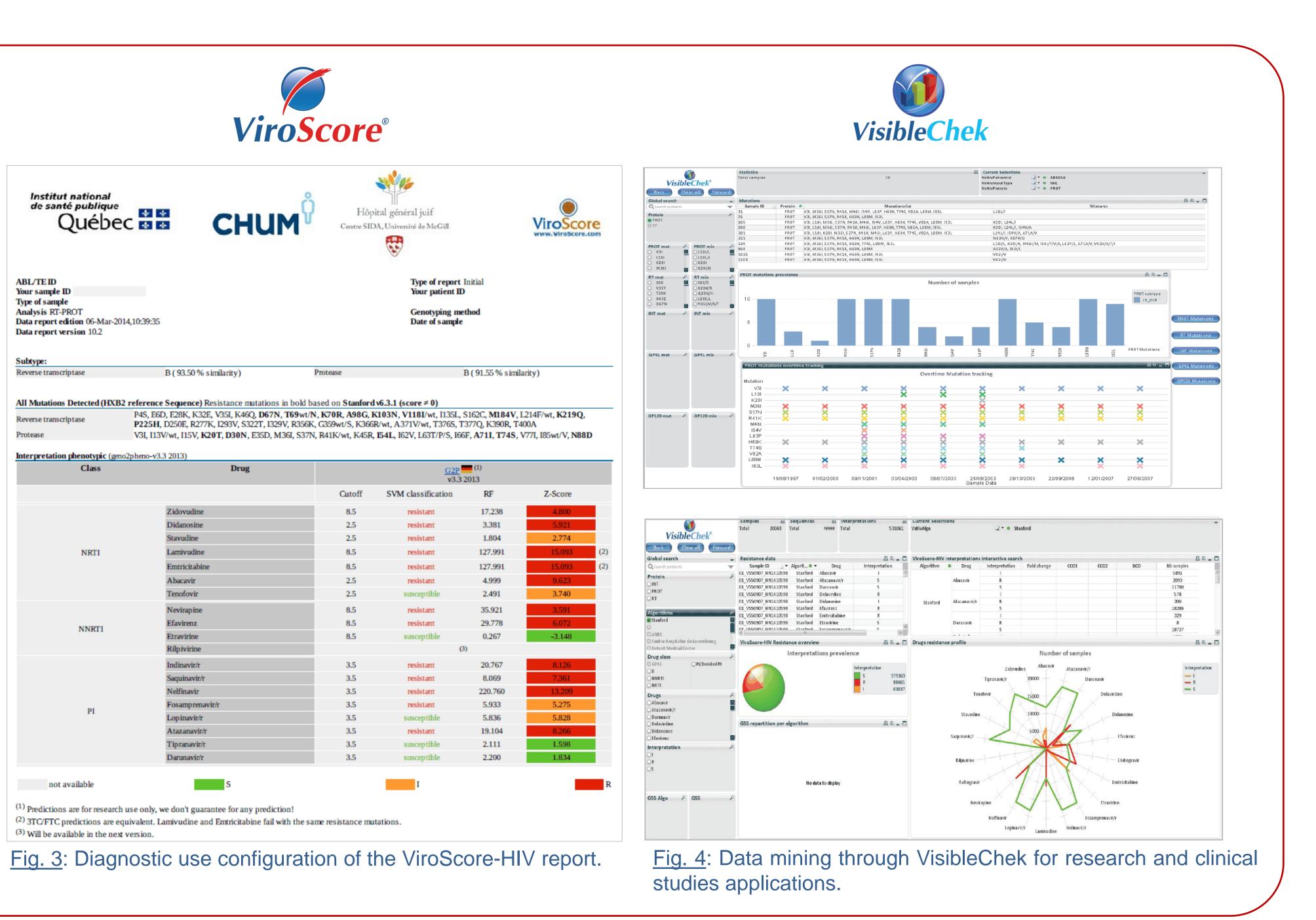
- and facilitated the daily management of HIV infection.

Isabelle Hardy¹, Daniela Moisi², Hugues Charest³, Régis Cantin³, Michel Roger¹, Mark A. Wainberg², Cécile Tremblay^{1,3}, Matthieu Barralon⁴, Ronan Boulmé⁴, Chalom

⁴ABL SA, Luxembourg, Luxembourg ⁵ABL TherapyEdge Spain SL, Barcelona, Spain

 ViroScore-HIV was installed on a central server and configured according to the needs of each site to optimize data workflows and improve timing constraints.

• During November 2013, 50 samples coming from our


• In most cases, Virtual-phenotyping interpretations from the latest version of the geno2pheno algorithm recently integrated in ViroScore gave results comparable to the

• The provincial ViroScore-HIV genotyping reports provides a virtual-phenotyping algorithm (geno2pheno[resistance] v3.3) with mutational interpretations from the Stanford HIVdb

• The ViroScore-HIV subtyping tool has been updated to include a recently developed High Performance Subtyping

• As the intent is to use ViroScore-HIV for daily diagnostic use, reports (Fig. 3) were exchanged with clinicians who

• Since January 2014, ViroScore-HIV has been used in routine

• Using the advanced ViroScore-HIV information systems, combining genotypic and phenotypic algorithms for drug resistance determinations helped in routine diagnostics

• In addition, analysis of the results within VisibleChek, may assist in defining emergent resistance patterns for newer second and third generation antiretroviral drugs.

• Furthermore, the technology also enables research activities via the use of easy-touse interfaces and data workflows tailored to the specificity of a network of hospitals.

