

Added value of Ultra Deep Sequencing in patients with HIV-1 Transmitted Drug Resistance mutations in the Reverse Transcriptase

N Chueca¹, M Alvarez¹, V Guillot¹, J López-Bueno¹, C Pou², Salanueva I³, R Boulmé⁴, J Hernández-Quero¹, M Alvarez-Tejado³, R Paredes², D Gonzalez⁵, <u>F García¹</u>.

¹ Hospital Universitario San Cecilio, Granada, Spain; ² IrsiCaixa AIDS Research Institute, Badalona, Spain; ³ Roche Diagnostics, Barcelona, Spain; ⁴ Advanced Biological Laboratories TE Spain SL, Barcelona, Spain ⁴ Advanced Biological Laboratories TE Spain SL, Barcelona, Spain

Aim

In this report we have investigated if additional mutations can be detected as viral minor mutants using the GS Junior System (Roche) in a background of Sanger detected HIV-1 transmitted drug resistance mutations (TDR) and how they can impact resistance interpretation.

Patients and Methods

11 naïve patients with documented TDR by Sanger-Sequencing (Trugene, Siemens NAD) were retested using the 454 HIV Collaboration Initiative Primer Plates and GS Junior System from Roche, enabling ultra-deep sequencing (UDS) of HIV-1 reverse transcriptase and protease. The UDS 454 information were analyzed in the dedicated UDS DeepChek®-HIV (v1.1, CE-IVD marked, ABL-TherapyEdge SA) diagnostic software application, allowing analyzing in routine the frequency of detection and the mutational load for each minor variant. For interpretation of the resistance mutations, the Stanford algorithm was used. Only mutations detected over a 1% threshold were considered for resistance interpretation.

- <u>Extraction</u>: 1ml plasma with High Pure Viral Nucleic Acid Large Volume Kit-Roche.
- Library Quantification: QuantiFluor SINGLE TUBE

Baseline characteristics			
Viral load (median; IQR)	87900 [22283-1240000]		
CD4 (median, IQR)	214 [42-610]		

Males (%)	81.8
Age (median, IQR)	35 [32-43]
Country of Origin (Spain,%)	90.9
Subtype	9 B; 1 A1; 1 CRF07_BC

- Type of entry :	RT	- NGS information	CHL	- NGS reads alignment
sample	 INT 	- Patient information	DMC	analysis
alignment/plate raw	 GP41 	- Clinical data	 Rega 	- NGS data QA/QC
data (v2)	 GP120 	 Regimen 	 RenaGeno 	(DeepChek Expert
- Type of alignment	■ V3	 Viral load 	RIS	System)
(consensus/individual	- Sanger data	•	 HIVdb 	- Sanger data analysis
reads)	■ PROT	- Physicians details	- Services	and QA/QC
- Type of genotyping	■ RT	- Healthcare providers	 Geno2Pheno 	- Mutations frequency
method	■ INT	- NGS data	Tropism	- Resistance testing
- Type of subtyping	 GP41 	management :	 VircoType 	- Subtyping
method	 GP120/V3 	 Thresholds 	- Report configuration	- Miscellaneous
- Options: Sanger		definition	 Language 	analysis
comparative			 GSS cutoffs 	 Coverage
analysis			definition	FW/RV
- Data source: file			 Mutations 	balance
upload / integration			display	 classification
with sequencer (v2)			 Mutational 	mutations of
			load	interest
			 Disable 	 Contaminati
			Expert	on check
			System	- DeepChek reporting
			Comments	- Data storage

Results

The table shows, per each sample, the viral load in copies/mL; a list of mutations detected by Sanger and 454-DeepCheck with their corresponding frequencies and mutational load in copies/mL; a list of mutations detected only by 454-DeepCheck with their corresponding frequencies and mutational load in copies/mL, and the additional reductions in susceptibility predicted from the genotypic information provided only by 454-DeepCheck. Additional mutations detected by 454-DeepCheck were found at a median [IQR] frequency of 2.33% [1.01-4.94] and median mutational load of 1222 c/ml [348-24107].

Viral Load	Sanger (%, Mut Load)	Added 454-DeepChek (%, Mut Load)	Added Resistance*
87900	103S (99,43; 87399) 179I (58,96; 51826)	69N (1,39;1222) 103R (2,77;2435) 103N (2,42;2127)	D4T, DDI (PLL)
15957	103N (90,91; 14500)	230L (3,29; 525)	ETV, RPV (IR)
495000	138A (92.02; 455499) 179D (85,28; 422136)	65R (1,33; 6584) 103N (4,87; 24107) 115F (3,11; 15395)	D4T (LLR);3TC, FTC, DDI (IR); TDF, ABC (HLR); EFV, NVP (HLR)
22283	103N (34,98; 7795)	190E (1.56; 348)	ETV, RPV (PLL)
1240000	K103N (95,24;1180976) P225H (98.83; 1225492) A98S (99,28;1231072)	no	
16600	E138A (37,63;6247)	M41L (4,94; 820) F77L (2.33; 387)	ABC, AZT, D4T, DDI, TDF (LLR)
27300	108I (97.77; 26691) 215L (97,02; 26486)	215R (1,75; 478)	_
752000	103N (97,03; 729666)	NO	_
500000	A98S (98,09/490450), K101Q (96.38/4819000), E138K (99,32/496600)	NO	
341000	V90I (54,40/185538)	M41L (1,01/3444)	ABC, DDI, TDF (PLR); AZT, D4T (LLR)
32994	D67N (99,02/32671) T69N (99,24/32743) K219Q (91,36/30143)	225H (1,85/610)	EFV (IR), NVP (LLR)

*PLL, Potential low level resistance; LLR, Low Level Resistance; IR, Intermediate Resistance; HLR, High Level Resistance

Conclusion

Patients carrying TDR mutations detected by Sanger sequencing frequently carry also additional minor viral mutant populations above a 1% threshold, which can also be detected using UDS methods. In our study, most of the patients with TDR to NRTIs and or NNRTIs had resistance to additional drugs when UDS mutations were used for resistance analysis. These findings may have important implications for first and subsequent line therapy designs and decisions.